
  

Quick Cryptography Intro

Gayn B. Winters, Ph.D.

(c) 2010, 2011, 2012, 2013, 2014, 2015



  

Topics Today
● Encryption

– Symmetric (Shared secret key): shifts, 
substitutions, permutations, stream and block 
ciphers, DES, AES

– Asymmetric (Public+Private keys): RSA, El 
Gamal, Elliptic Curve

● Hash functions and digital signatures

● Session keys, SSL/TLS, HTTPS



  

Future Talks
● Attacks and Secrecy

● Applications: blind signatures, anonymous communication and 
email, Tor, pseudonyms, digital cash, open transactions, 
voting, zero-knowledge proofs, Bitcoin, ...

● Privacy, Off-the-record messaging, startpage...

● Forensic and anti-forensic techniques

● Security: Attack prevention, detection, and recovery

● Quantum and Post-Quantum cryptography

Google yields many great papers, also Wikipedia has excellent, 
mostly current, articles. YouTube has some good talks. Books 
tend not to be current … caveat emptor...



  

History

● Will make some historical comments

● Read: David Kahn's Codebreakers, 1967, 1996  
(abridged version is online) and visit david-kahn.com

● Google: History Cryptology/Encryption

● Dorothy E. Denning, Naval Postgraduate 
School, books and articles. dennin@nps.edu 

● Bruce Schneier, www.schneier.com, textbook: 
Applied Cryptography, 1996; good blog



  

Steganography

● Hiding the message

– Invisible ink, coded yarn, tatoos,...

– Embedding in a picture, video, music, radio…  

– Many advanced techniques (Signal processing, coding 
theory, perception, ...)

● Steganalysis  - finding the message

– Google: John Ortiz

– Youtube: stenanography

– Same advanced techniques

– Problem for Data Loss Prevention

– Problem for inbound malware

– Secrets of the Mujahideen



  

Zeus: Famous Malware

Cyphort Labs



  

Lots of Tools



  

Network Cryptology
● Make open messages (in transit + in storage) 

– Private: make msg unreadable

– Authentic: assure sender, receiver, data correct

– Non-repudiated: sender can't deny sending

– Other issues: leakage, replay, ...

● WARNING: Level of security of cryptology tech-
niques is a future topic.



  

Symmetric
Shared Secret Key

● Let k be a shared secret key (Alice and Bob)

● Let M be a message space, C a cipher space

● Let c = E(k,m) be an encryption M → C

● Let m = D(k,c) be a decryption; D(k,E(k,m))=m

● Alice wants to send message m to Bob

– Somehow they share key k; also E, D

– Alice encrypts m and sends c = E(k,m)

– Bob decrypts c to get m = D(k,c)



  

Shift Ciphers

● M = C = (ASCII)n or (Unicode)n 

● Code number wraps modulo N = 28 or 216.

● Key k in Z/N

● m = (m
i
) encrypt to get E(k,m) = (c

i
); c

i
 = k+m

i
 

● c = (c
i
) decrypt: D(k,c) = (m

i
); m

i
 = -k+c

i
 

● (Can use any regional 8-bit code for ASCII as well as 
subsets with smaller N)

● Exercise: what are keys if just shift A, B, …, Z ?



  

Substitution/Permutation Ciphers

● M = C = (ASCII)n or (Unicode)n 

● Key k is a permutation of (ASCII) or (Unicode)

● m = (m
i
) encrypt to get E(k,m) = (c

i
); c

i
 = k(m

i
)

● c = (c
i
) decrypt: D(k,c) = (m

i
); m

i
 = k-1(c

i
) 

● There are N! keys k; N = 28 or 216. 



  

ADFGVX Substitution Ciphers

A D F G V X

A Q N 5 D P K

D U F W 3 I E

F O 8 A T Y 6

G 2 L 1 V C S

V B X M 7 H 9

X R 4 G 0 J Z

• ADFGVX chosen for 
distinct Morse 
Codes.

•

• RETREAT → 
XA DX FG XA FF FG

•

• 36! Keys 
(Permutations)



  

Rearrangement/Permutation Ciphers

● M = C = (ASCII)n or (Unicode)n 

● k is a permutation of [0,n]

● m = (m
i
) encrypt to get E(k,m) = (c

i
); c

i
 = m

k(i)

● c = (c
i
) decrypt: D(k,c) = (m

i
); m

i
 = c

j(i)   
j=k-1  

● There are n! keys k, but usually simple 
permutations are used such as transpositions 



  

Homophonic Ciphers

● M → random choice in a subset of C

● Typically take subset for letter x to be 
proportional to the frequency of x.  The 
ciphertext will have a flat distribution.

● Example: letters → subsets of 0-99

– E: 81 86 45 21 08 65 11

– T: 23 15 48 95 64 01

– Etc.



  

One Time Pad
(Vernam Ciper, AT&T, Patented 1917 Invented 

much earlier)

● Let K = M = C = {0,1}n 

● Define E(k,m) = k xor m ; D(k,c) = k xor c

● Number of keys k is |K| = |M| = 2n 

● If k is truly random, OTP is totally secure, 
[Shannon, '47?; Bell STJ papers '49, '51]

● Truly random? How about Pseudo-random?

● Red phone: DC and Moscow STILL???



  

(Linear) Feedback Shift Registers 
(LFSR)

● Need shift register of n bits s
0
, …, s

n-1
 

● Use s
0
 as next pseudo-random bit, then

● Let f be (linear) polynomial function

● Set s
i
 := s

i+1
 for i<n-1 and s

n-1
:=f(s

0
, …, s

n-1
)

● Can generate sequence of 2n-1 bits

● Only need 2n values to predict all, if linear.



  

Multiple-Shift Ciphers

● Misattributed to Blaise de Vigenère

● M = C = (ASCII)n or (Unicode)n 

● Instead of one key k, use a sequence k = (k
i
)

● E(k,m) = c
i
 = m

i
 + k

i
 modulo N = 28 or 216.

● D(k,c) = m
i
 = c

i
 – k

i
 modulo N = 28 or 216.

● Cycle k
i
 when key list is exhausted

● Encoding/decoding via mechanical disk/drum 
keyed to the sequence k.



  

Confederate Cipher Drum



  

Multiple-Permutation Ciphers

● Ditto, but k
i
 are permutations

● Enigma and Hagelin machines

– commercial and military

– Polish and British efforts: cracking machines

– Books and movies … Story of Alan Turing



  

Stream and Block Ciphers

● Stream Cipher is typically bit, character, or 
word at a time

– All previous examples are stream ciphers

● Block Cipher chunks up the message into 
fixed sized blocks, e.g. n = 64 or 128 bit 
blocks, and both E and D depend on n.

● Last block usually padded, e.g., with bits 1, 
0,...0 so that each block has exactly n bits.



  

Stream Ciphers

● Small and fast. Many popular applications

● Synchronous and asynchronous

● Self-synchronizing ciphers

● Serious security problems historically

● Many more examples:  RC4, A5/N (GSM), E0 
(Bluetooth), PY, HC-128, Trivium, Grain, …

● Serious work, competitions, analysis, … Need 
smaller and faster for new comm devices.



  

Cryptographic Nonces

● Address the problem of replay: send E(k,m) 
once and only once

● Generate non-repeating integer nonces n
i
 and 

define E'(k,m) = E(k,n
i
||m) if m is received with 

duplicate nonces, subsequent ones are rejected.

● Often time is encoded in a nonce



  

The WEP Saga 802.11

● 40 bit key + 24 bit IV = 64 bit RC4 key for 
confidentiality and CRC-32 for integrity.

● Key will repeat after some 5000 messages

● Easily cracked in a few minutes.

● Now WEP uses 256 bit keys, stronger...

● Many laptops are unsecured. TJ Maxx breach 
was result of WEP.

● Bluetooth, barcode readers, PDAs, wireless 
printers, etc. can be hacked.



  

Data Encryption Standard - DES

● NBS competition for commercial encryption,  IBM (H. 
Feistel) “won”, 1976 FIPS standard, 64 bit blocks

● NSA forced 64 → 56 bit key – “easy” brute force 
attacks.  Slow Triple DES extended life. Still used.

● Algorithm makes sixteen 48 bit subkeys k
i
 from key k. 

16 rounds: take a 32 bit half block,  expand it to 48 
bits, xor k

i
, divide into 8 parts, apply 8 non-linear (“S 

block”) lookups, permute.



  

DES



  

Advanced Encryption Standard – AES
FIPS 197 Replaced DES in 2001

Belgians Joan Daemen and Vincent Rijmen

● 128 bit block ciphers of key sizes 128, 192, 
and 256 bits which take (fast) substitution-
permutation rounds of 10, 12, and 14 cycles.

● Code at aesencryption.net (asym, PHP, Java)

● As of 2014, there are some attacks that take 
less than key-size time, but no practical ones.



  



  

Sharing Keys

● Usually, cryptography just assumes the 
encryption E and decryption D functions are 
known. The problem is how to share keys...

● No sharing is necessary with Public Key 
Encryption (PKE).  Every individual has two 
keys. One private, secret key k

Asec
 that only the 

individual Alice knows, the other is public k
Apub

, 

that Alice publishes on a public web site for all 
to see.



  

Asymmetric 
Public Key Encryption - PKE

● (G,E,D,K,K',M,C) is a PKE iff

– Key Generator G: { } → K x K' where G() = (k
pub

,k
priv

)

– Encryption E: K x M → C

– Decryption D: K' x C → M

– D(k
priv

,E(k
pub

,m)) = m

● Each user of the (G,E,D) PKE gets a pair of keys from G.  
The keys k

pub
 and the functions E and D are made public.

● Philosophy: to find k
priv

 from k
pub

 , must solve a hard 

problem taking unfeasible compute power.



  

(Textbook) RSA
(Rivest, Shamir, Adleman, 1978)

● Hard problem: factor large n into primes.

● Choose large primes p and q of similar size, 

and set n = pq (keep φ(n), p and q secret) 

where φ(n) = (p-1)(q-1) = |Z/n*|. For G: pick e 

in Z/φ(n)* and compute d = e-1.  
Then k

pub
 = (n,e) and k

priv
 = (n,d).   

● For message m in Z/n, define E(k,m) = me and 
D(k,m) = md mod n.

● Theorem.  med = m mod n



  

Homework: Why RSA works

● Since ed = 1 mod  φ(n), ed = 1+k(p-1)(q-1)

● In Z/n, D(d,c) = cd = med = m1+k(p-1)(q-1) =

m(mφ(n))k = m  if m is invertible in Z/n; if not, then 

gcd(m,n) > 1 is a factor of n, say m = rp. Then m1+k(p-1)(q-1) = rp((rp)p-1)k(q-1) = 
rp  mod q. Hence both m and m1+k(p-1)(q-1) = 0 mod p and = rp mod q. By 
CRT they are equal mod pq = n.

● Hard to compute d from e: one must know φ(n) 
= (p-1)(q-1). In which case, p+q = n-φ(n)+1 and p-q = sqrt((p+q)2-

4n) and p = (p+q)/2 + (p-q)/2 and q = (p+q)/2 – (p-q)/2. Thus 

knowing n and φ(n) yields the factors p and q.



  

Beware for RSA

● Primes p, q are “safe” iff p-1 and q-1 have large 
prime factors (Z/n will have large cyclic subgroups.)

● Primes p and q cannot have same number of digits; 
else, search for p,q starting at sqrt(n)

● Public key e cannot be too small

● Stop using 1024 bit RSA, quadratic and number-field 
sieves are effective. 2048 is slow. ECC better.

● Always pad message m to get m' (more on this later)

● Use well-tested, well-analyzed implementation



  

Padding RSA

● Problems with textbook RSA

– (Malleable) if c = me and c' = c*2e, decrsypting 
c' gives 2m.  i.e. can make predictable 
changes to ciphertexts.

– (Deterministic = not semantically secure) can 
distinguish between plain text m and m' by 
encrypting both with public key.

● Basic idea is to pad m with random bits r and 
encrypt m||r to get c.  Decrypt c to get m||r and 
hence m.  Neither Malleable nor Deterministic.



  

Optimal Asymmetric Encryption 
Padding (Wikipedia: OAEP)

Given, n = modulus of RSA, k0 fixed integer, G 
expands k0 bits to n-k0 bits, H reduces n-k0 bits 
to k0 bits. 

● pad m with k1 zeroes to be m' of n-k0 bits

● Pick random k0 bit string r

● X = m' XOR G(r), Y = r XOR H(X)

● Encrypt X || Y to get c; decrypt c to get X || Y

● Recover r = Y XOR H(X), m' = X XOR G(r)

● Strip k1 zeroes off m' to get m 



  

El Gamal
(Avoided RSA Patent)

● Hard problem: compute discrete logs mod p for large 
prime p, i.e. solve y=gx for x mod p

● Choose large p and generator g of Z/p*

● G: pick random d in Z/p*, compute e = gd.
Then k

pub
 = e and k

priv
 = d. 

● To encrypt m in Z/p, choose random (secret) integer k 
and compute r =gk and t = ekm ; discard k. E(e,m) = 
(r,t) and D(d,c=(r,t)) = t*r-d . Exercise: D(d,E(e,m)) = m.

● Choose a different k for every (block) m.



  

Homework: Why El Gamal works

● D(d,E(e,m)) = D(d,(gk,ekm)) =  ekm(gk)-d = 
gdkm(gk)-d = m

● Exercise: D(e,E(d,m)) = m

●  Hard: to discover d from e, one must solve e 
= gd for d = log

g
(e). This is the discrete log 

problem.

● BEWARE: if same k is used for two blocks m 
and m', then m' can be recovered from m.



  

Diffie-Hellman

● Pick a large prime p of 600 digits ~ 2000 bits

● Pick a finite cyclic group G = (g) of order n

● G could be Z/p* or an elliptic curve of char p

● Alice chooses random secret a in Z/n and 
sends A = ga to Bob

● Bob chooses random secret b in Z/n and 
sends B = gb to Alice

● Ab = Ba = gab is a shared secret key in G.



  

Session Keys

● Suppose G() = (kpub,kpriv) for E, D.  Let k
Apub

 

and k
Apriv

 be public and private keys for Alice.  

● For Bob to share a secret key k with Alice, he 
just encrypts k with k

Apub
 and sends the result c 

= E(k
Apub

,k) to Alice who can retrieve k = 

D(k
Apriv

,c) using her private key.

● Session keys used by many network protocols





  

Points on an Elliptic Curve
● Write down equations for A+B, and get a finite 

abelian group E(F) (assoc law tedious) over finite 
field F. 

● Elliptic Discrete Logs: given Y = rX find r .

● Choices are made to improve performance and 
difficulty of EDL problem. Also need a (public) 
message embedding i:{m} → E(F) or a way to use 
only the x-coordinates.



  

Elliptic El Gamal

● For elliptic curve E over F, pick a “base point” G with 
(G) = E(F) with i:{m} → E(F)

● A private key is a random integer a; compute public 
A = aG. For a message m, pick random integer k and 

– Encrypt E(A,m) = (kG, kA+i(m)).  

– Decrypt by D(a,(R,T)) = -aR+T 

● D(a,E(A,m)) = D(a,(kG,kA+i(m))) = -akG+kA+i(m) = 
-kA + kA + i(m) = i(m)



  

Choosing Fields and Equations
for Elliptic Encryption

● Focus on F = F
q
 where q = 2m or q = large p; there are q 

distinct elliptic curves over F
q
. 

● For q=2m, E:  y2 + xy = x3 + ax + b,  4a3 + 27b2 ≠ 0

● |F| and |Curve| need to be large. Eqn needs to be simple for 
easy computation. The base point (generator) G is chosen so 
that its multiples rG are easy to compute.

● NIST has recommendations (FIPS 186), but there is a fog of 
suspicion (NY Times, 2013, and multiple other recent papers) 
due to NSA involvement. Non-NIST curves are gaining 
popularity Cf. Bernstein and Lange:  http://safecurves.cr.yp.to



  

Bernstein's Curve25519

● Dan Bernstein: lucid paper on encryption 
performance and security with Curve25519

● p = 2255 – 19, F = F
p
 = Z/p, g = 9

● y2 = x3 + 486662x2 + x    (Montgomery form)

● Keys are 32 byte x-coordinates via map E → F

● Generates 32 byte shared secret key

● Uses floating point registers for fast arithmetic

● Many applications today use Curve25519 



  

Cryptographic Hash Functions

● H:Data → Values where |Values| << |Data|

(a)Easy to compute; use entire data/message

(b)Infeasible to invert (to find preimage)

(c)Infeasible to modify w/o (large) value change (to 
find 2nd preimage)

(d)Infeasible to find collisions

(e)Given H(m), H(m'), cannot compute H(m||m')

● If |Values| = 2n then want Prob(b) = Prob(c) = 1/2n 
and Prob(d) = 1/2n/2 . “Security” = n/2.

● Data → Blocks → State → ... → State → Outputf f



  



  

Avalanche Effect

Using RHash implementation (not official)

SHA3-256("The quick brown fox jumps over the lazy dog")=

0x 
69070dda01975c8c120c3aada1b282394e7f032fa9cf32f4cb
2259a0897dfc04

SHA3-256("The quick brown fox jumps over the lazy dog.")=

0x 
a80f839cd4f83f6c3dafc87feae470045e4eb0d366397d5c6ce
34ba1739f734d



  

Hash Applications
● File/message integrity: publish hash value, recompute it 

after file/message transfer. “Message Authentication 
Code” = MAC = hash value

● Password storage: only store the hash value (usually 
store (salt,H(salt||password)) to avoid knowing Alice and 
Bob have the same pswd or precomputing H(common 
words).)

● Digital signatures (analog of ink): if k is a shared secret 
key for (E,D) then S(k,m) = E(k,H(m)) is a signature, and 
can send (m,S(k,m)) in the clear.

– Has the usual key sharing problem

– How about using public key encryption?



  

Digital (Public Key) Signatures

● Want authentication and non-repudiation:  If 
Alice provides a signature, verify authentic, 
and prove she cannot later deny that it is hers.

● Scheme-type hard problems

– Integer factorizations (RSA, Rabin)

– Discrete Logarithms (El Gamal, Schnorr, DSA, 
Nyberg-Rueppel)

– Elliptic Curves (ECDSA)



  

RSA Signatures

● Pick large primes p and q with n = pq.  Pick 

ed=1 in Z/φ(n)* where φ(n) = (p-1)(q-1) = |Z/n*| 

● d is private key, e is public key.

● To sign m in Z/n, compute h = H(m), then s=hd 
mod n is the signature. Verify se=h in Z/n.

● Authentication: se = hed = h1+kφ(n) = h (exercise)

● Non-repudiation: only holder of d  could have 
created s



  

El Gamal Signatures

● Let p be a large prime, g a generator of Z/p*

● Alice's private key d with 1 < d < p-1.  e=gd is the 
public key. Note p, g, e, and hash fcn H are public.

● To sign m in Z/p, pick random k, 1 < k < p-1, gcd(k,p-
1)=1. Compute h = H(m), r = gk, and 
s = (h-dr)k-1 mod p-1.  If s = 0, pick a new k.  (r,s) is 
the signature.

● Accept (r,s) if 0<r<p & 0<s<p-1 & gh = errs  mod p

● If e,d are Alice's keys, then e=gd and r=gk, hence gh = 
gksgdrgt(p-1) = errs since gp-1 = 1 mod p

● Given gh = errs  mod p, is s Alice's signature? 



  

Schnorr Signatures
(Patent expired in 2008)

● Let G = (g) have prime order q, e.g. G a subgroup of 
Z/p*, let H be a crypto hash fcn. Let 1<d<p-1 be the 
private key, e = gd the public key.  To sign a finite bit 
string message m, choose a random k, 1<k<p-1 and 
let r = gk be represented as a bit string.  Let h = H(m||
r). Let s = k-hd mod p-1. The signature is (s,h). Since 
r = gs+hd+t(p-1) = gseh in Z/p, h = H(m||gseh)

● Accept (s,h) if h = H(m||gseh)

● Nice: with Schnorr, no inversions are necessary to 
compute or verify the signature (s,h)



  

“The” Digital Signature Algorithm DSA
(Your tax dollars at work)

● Now FIPS 186-4, with H = SHA 1 or 2.

● Choose an N bit prime q. N<outputsize(H)

● Choose an L bit prime p: p-1=mq.

● Choose g in Z/p of order q, e.g. g = h(p-1)/q 

● Now apply El Gamal with (p,q,g)



  

ECDSA – sign
(Additive El Gamal)

● Elliptic E, G base point of prime order n, d
A
 in Z/n is 

Alice's private key, Q
A
 = d

A
G her public key, 

cryptographic hash H . To sign message m in Z/n:

1. Select random k in Z/n*, different for all signatures

2. Calculate (x
1
,y

1
) = kG; convert x

1
 to an integer x

1

3. Calculate r = x
1
 mod n. If r = 0 mod n, goto 1

4. Calculate e = H(m). If e+rd
A
 = 0 mod n, goto 1

5. Calculate s = k-1(e+rd
A
) in Z/n* 

6. Output (r,s) as the signature



  

ECDSA - verify
● Assume Bob has certified copy of Alice's credentials, e and m. 

● Verify signature (r,s)

– Validate r and s are in Z/n*

– Calculate w = s-1 , u
1
 = ew, u

2
 = rw mod n

– Calculate C = (x
2
,y

2
) = u

1
G + u

2
Q

A
  

– If C = O, reject signature

– Convert x
2
 to an integer x

2
 mod n

– Signature valid iff r = x
2
 mod n



  

ECDSA - proof
● Why does verification work?

● If signature (r,s) was computed by Alice, then Q
A
 = d

A
G, r = x

1
 mod n 

where (x
1
,y

1
) = kG for k in Z/n*, and s = k-1(e+rd

A
) in Z/n* where e = H(m).  

Write C = (x
2
,y

2
) = u

1
G + u

2
Q

A
 where u

1
 = es-1 and u

2
 = rs-1 mod n.  Thus 

C = (es-1)G + (rs-1d
A
)G = (e+rd

A
)s-1G = (e+rd

A
)k(e+rd

A
)-1G = kG = (x

1
,y

1
), 

and hence r = x
1
 = x

2
 mod n

● Conversely, suppose Bob receives (r,s) as a signature.  He computes C = 

(x
2
,y

2
) = u

1
G + u

2
Q

A
 where u

1
 = es-1 , u

2
 = rs-1 mod n, and e = H(m). Bob 

verifies that r = x
2
 mod n.  Write C = kG.  We know Q

A
 = d

A
G.  Thus kG = 

C = (es-1)G + rd
A
s-1G = (e+rd

A
)s-1G. Thus k = (e+rd

A
)s-1 in Z/n, and s = 

(e+rd
A
)/k.  In other words, r and s are determined, and the signature (r,s) 

must have been created using Alice's private key d
A
 .



  

Sony Playstation3 ECDSA Hack
Repeating use of k

● Given (r,s) and (r,s') for messages m and m', 
with hashs e and e'; if same k, note that

● s-s' = k-1(e-e') mod n, so k = (e-e')/(s-s') and 
one can solve s = k-1(e+rd

A
) for Alice's private 

key d
A
.

Ref: Console Hacking 2010



  

Certificates
Authentication, Public Keys, etc

● Certificate Contents

– Certification Authority – CA

– Root CA – certifies its own keys!

– Certificate Owner

– Expiration Date

– Owner's Public Key

– Certificate serial number

– Other identifying info

– Digital Signature(s).



  

Secure Socket Layer, SSL 2,3 → 
Transport Security Layer, TSL 3.1,...

● Secure TCP connection = Key exchange method, encryption 
algorithm, and content authentication hash algo

● Handshake: 

– client hello: cipher proposal, 32 random bytes

– server hello: select cipher, 32 random bytes, certificate, hello 
done

– client key exchange: 48 byte secret encrypted with server 
public key, change to cipher msg

– Server change to cipher msg, finished record encrypted and 
MAC'd

● For some applications, server may request client certificate

● Record Processing: cuts msg into blocks, opt. compresses, 
hashes, encrypts block, sends to Transport Layer



  

HTTPS

● HTTPS requires SSL/TLS to be used

● Some overhead, often accelerated with hw

● No client certificates.

● Marking cookies “secure” tells browser to only 
send cookie data, e.g. session Ids, via 
SSL/TLS. (Cookies should also be marked 
“HTTPonly” to inhibit javascript client-side 
attacks.)



  

Recommended Key Lengths

● Need longer and longer keys over time

– Hardware improvements

– Algorithm improvements

● Ask how long your encryption should last! 50 
years is reasonable....

● There are legal issues around both time and 
key storage.  Don't lose your keys!!!

● NIST, ANSSI, BSI, NSA publish recom-
mendations; also check www.keylength.com



  

What to use and trust?
● OTR: Off the Record messaging

● Tor

● StartPage – privacy browser

● Tails – a live OS that can boot from an external drive. Used to 
preserve privacy.

● GPG, GPG4Win (Gnu freeware impl of OpenPGP)

● TrueCrypt – might be back online; does disk encryption

● MiniLock email uses Curve25519

● File Erasure – PGP does only one overwrite

● Air Gapped Computers – transfer via USB still tricky

● SSL/TLS???  OpenSSL? Not BGP due to router infections.

● Sage – open source math tool



  

Final Thoughts
● Cryptography is only the non-people part of security.

● Known attacks prove future attacks will become more 
sophisticated and widespread with many actors.

● While credit card and IP theft is on the rise, a wave of ICS 
cyber-terrorism (stuxnet-style) has yet to hit big.  We are 
not prepared for either.

● The economics of security will soon change as the cost of 
cyber-crime is fairly allocated.

● Encryption is hard to implement correctly, and Crypt-
analysis is only in its infancy. Cryptography should be 
taught to undergraduate engineers. It is basic math and 
basic engineering.

● Backup your systems offline to protect from ransomware


