Quick Cryptography Intro

Gayn B. Winters, Ph.D.

(c) 2010, 2011, 2012, 2013, 2014, 2015

Topics Today

- Encryption
- Symmetric (Shared secret key): shifts, substitutions, permutations, stream and block ciphers, DES, AES
- Asymmetric (Public+Private keys): RSA, EI Gamal, Elliptic Curve
- Hash functions and digital signatures
- Session keys, SSL/TLS, HTTPS

Future Talks

- Attacks and Secrecy
- Applications: blind signatures, anonymous communication and email, Tor, pseudonyms, digital cash, open transactions, voting, zero-knowledge proofs, Bitcoin, ...
- Privacy, Off-the-record messaging, startpage...
- Forensic and anti-forensic techniques
- Security: Attack prevention, detection, and recovery
- Quantum and Post-Quantum cryptography

Google yields many great papers, also Wikipedia has excellent, mostly current, articles. YouTube has some good talks. Books tend not to be current ... caveat emptor...

History

- Will make some historical comments
- Read: David Kahn's Codebreakers, 1967, 1996 (abridged version is online) and visit david-kahn.com
- Google: History Cryptology/Encryption
- Dorothy E. Denning, Naval Postgraduate School, books and articles. dennin@nps.edu
- Bruce Schneier, www.schneier.com, textbook: Applied Cryptography, 1996; good blog

Steganography

- Hiding the message
- Invisible ink, coded yarn, tatoos,...
- Embedding in a picture, video, music, radio...
- Many advanced techniques (Signal processing, coding theory, perception, ...)
- Steganalysis - finding the message
- Google: John Ortiz
- Youtube: stenanography
- Same advanced techniques
- Problem for Data Loss Prevention
- Problem for inbound malware
- Secrets of the Mujahideen

Zeus: Famous Malware

Cyphort Labs

Lots of Tools

Network Cryptology

- Make open messages (in transit + in storage)
- Private: make msg unreadable
- Authentic: assure sender, receiver, data correct
- Non-repudiated: sender can't deny sending
- Other issues: leakage, replay, ...
- WARNING: Level of security of cryptology techniques is a future topic.

Symmetric Shared Secret Key

- Let k be a shared secret key (Alice and Bob)
- Let M be a message space, C a cipher space
- Let $\mathrm{c}=\mathrm{E}(\mathrm{k}, \mathrm{m})$ be an encryption $\mathrm{M} \rightarrow \mathrm{C}$
- Let $\mathrm{m}=\mathrm{D}(\mathrm{k}, \mathrm{c})$ be a decryption; $\mathrm{D}(\mathrm{k}, \mathrm{E}(\mathrm{k}, \mathrm{m}))=\mathrm{m}$
- Alice wants to send message m to Bob
- Somehow they share key k; also E, D
- Alice encrypts m and sends $c=E(k, m)$
- Bob decrypts c to get $\mathrm{m}=\mathrm{D}(\mathrm{k}, \mathrm{c})$

Shift Ciphers

- $\mathrm{M}=\mathrm{C}=(\mathrm{ASCII})^{\mathrm{n}}$ or (Unicode) $)^{\mathrm{n}}$
- Code number wraps modulo $\mathrm{N}=2^{8}$ or 2^{16}.
- Key k in Z/N
- $m=\left(m_{i}\right)$ encrypt to get $E(k, m)=\left(c_{i}\right) ; c_{i}=k+m_{i}$
- $\mathrm{C}=\left(\mathrm{c}_{\mathrm{i}}\right)$ decrypt: $\mathrm{D}(\mathrm{k}, \mathrm{c})=\left(\mathrm{m}_{\mathrm{i}}\right) ; \mathrm{m}_{\mathrm{i}}=-\mathrm{k}+\mathrm{C}_{\mathrm{i}}$
- (Can use any regional 8-bit code for ASCII as well as subsets with smaller N)
- Exercise: what are keys if just shift A, B, ..., Z ?

Substitution/Permutation Ciphers

- $\mathrm{M}=\mathrm{C}=(\mathrm{ASCII})^{\mathrm{n}}$ or (Unicode) ${ }^{\mathrm{n}}$
- Key k is a permutation of (ASCII) or (Unicode)
- $m=\left(m_{i}\right)$ encrypt to get $E(k, m)=\left(c_{i}\right) ; c_{i}=k\left(m_{i}\right)$
- $\mathrm{c}=\left(\mathrm{c}_{\mathrm{i}}\right)$ decrypt: $\mathrm{D}(\mathrm{k}, \mathrm{c})=\left(\mathrm{m}_{\mathrm{i}}\right) ; \mathrm{m}_{\mathrm{i}}=\mathrm{k}^{-1}\left(\mathrm{c}_{\mathrm{i}}\right)$
- There are N ! keys $\mathrm{k} ; \mathrm{N}=2^{8}$ or 2^{16}.

ADFGVX Substitution Ciphers

- ADFGVX chosen for distinct Morse Codes.
- RETREAT \rightarrow

XA DX FG XA FF FG
$36!$ Keys
(Permutations)
$36!$ Keys
(Permutations)

A D F G V X

 distinct Morse.

$$
\begin{aligned}
& \text { AQN5 D P K } \\
& \text { D U F W } 3 \text { I E } \\
& \text { A } \\
& \text { G } 2 \text { L } 1 \text { V C S } \\
& \text { V B X M } 7 \text { H } 9 \\
& \text { X R } 4 \text { G } 0 \text { J Z }
\end{aligned}
$$

Rearrangement/Permutation Ciphers

- $\mathrm{M}=\mathrm{C}=(\mathrm{ASCII})^{\mathrm{n}}$ or (Unicode) $)^{\mathrm{n}}$
- k is a permutation of $[0, n]$
- $m=\left(m_{i}\right)$ encrypt to get $E(k, m)=\left(c_{i}\right) ; c_{i}=m_{k(i)}$
- $C=\left(c_{i}\right)$ decrypt: $D(k, c)=\left(m_{i}\right) ; m_{i}=c_{j(i)} j=k^{-1}$
- There are n ! keys k, but usually simple permutations are used such as transpositions

Homophonic Ciphers

- $M \rightarrow$ random choice in a subset of C
- Typically take subset for letter x to be proportional to the frequency of x. The ciphertext will have a flat distribution.
- Example: letters \rightarrow subsets of 0-99
- E: 81864521086511
- T: 231548956401
- Etc.

One Time Pad

(Vernam Ciper, AT\&T, Patented 1917 Invented much earlier)

- Let $K=M=C=\{0,1\}^{n}$
- Define $E(k, m)=k \underline{\text { xor }} m ; D(k, c)=k \underline{x o r} c$
- Number of keys k is $|\mathrm{K}|=|\mathrm{M}|=2^{n}$
- If k is truly random, OTP is totally secure, [Shannon, '47?; Bell STJ papers '49, '51]
- Truly random? How about Pseudo-random?
- Red phone: DC and Moscow STILL???

(Linear) Feedback Shift Registers (LFSR)

- Need shift register of n bits $\mathrm{S}_{0}, \ldots, \mathrm{~S}_{\mathrm{n}-1}$
- Use s_{0} as next pseudo-random bit, then
- Let f be (linear) polynomial function
- Set $\mathrm{s}_{\mathrm{i}}:=\mathrm{s}_{\mathrm{i}+1}$ for $\mathrm{i}<\mathrm{n}-1$ and $\mathrm{s}_{n-1}:=\mathrm{f}\left(\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{n}-1}\right)$
- Can generate sequence of $2^{n}-1$ bits
- Only need $2 n$ values to predict all, if linear.

Multiple-Shift Ciphers

- Misattributed to Blaise de Vigenère
- $\mathrm{M}=\mathrm{C}=(\mathrm{ASCII})^{n}$ or (Unicode) ${ }^{n}$
- Instead of one key k, use a sequence $k=\left(k_{i}\right)$
- $E(k, m)=c_{i}=m_{i}+k_{i}$ modulo $N=2^{8}$ or 2^{16}.
- $D(k, c)=m_{i}=c_{i}-k_{i}$ modulo $N=2^{8}$ or 2^{16}.
- Cycle k_{i} when key list is exhausted
- Encoding/decoding via mechanical disk/drum keyed to the sequence k.

Confederate Cipher Drum

Multiple-Permutation Ciphers

- Ditto, but k_{i} are permutations
- Enigma and Hagelin machines
- commercial and military

- Polish and British efforts: cracking machines
- Books and movies ... Story of Alan Turing

Stream and Block Ciphers

- Stream Cipher is typically bit, character, or word at a time
- All previous examples are stream ciphers
- Block Cipher chunks up the message into fixed sized blocks, e.g. $\mathrm{n}=64$ or 128 bit blocks, and both E and D depend on n .
- Last block usually padded, e.g., with bits 1 , $0, \ldots 0$ so that each block has exactly n bits.

Stream Ciphers

- Small and fast. Many popular applications
- Synchronous and asynchronous
- Self-synchronizing ciphers
- Serious security problems historically
- Many more examples: RC4, A5/N (GSM), E0 (Bluetooth), PY, HC-128, Trivium, Grain, ...
- Serious work, competitions, analysis, ... Need smaller and faster for new comm devices.

Cryptographic Nonces

- Address the problem of replay: send $E(k, m)$ once and only once
- Generate non-repeating integer nonces n_{i} and define $E^{\prime}(k, m)=E\left(k, n_{i} \| m\right)$ if m is received with duplicate nonces, subsequent ones are rejected.
- Often time is encoded in a nonce

The WEP Saga 802.11

- 40 bit key +24 bit IV $=64$ bit RC4 key for confidentiality and CRC-32 for integrity.
- Key will repeat after some 5000 messages
- Easily cracked in a few minutes.
- Now WEP uses 256 bit keys, stronger...
- Many laptops are unsecured. TJ Maxx breach was result of WEP.
- Bluetooth, barcode readers, PDAs, wireless printers, etc. can be hacked.

Data Encryption Standard - DES

- NBS competition for commercial encryption, IBM (H. Feistel) "won", 1976 FIPS standard, 64 bit blocks
- NSA forced $64 \rightarrow 56$ bit key - "easy" brute force attacks. Slow Triple DES extended life. Still used.
- Algorithm makes sixteen 48 bit subkeys k_{i} from key k . 16 rounds: take a 32 bit half block, expand it to 48 bits, xor k_{i}, divide into 8 parts, apply 8 non-linear (" S block") lookups, permute.

DES

Advanced Encryption Standard - AES FIPS 197 Replaced DES in 2001

 Belgians Joan Daemen and Vincent Rijmen- 128 bit block ciphers of key sizes 128, 192, and 256 bits which take (fast) substitutionpermutation rounds of 10, 12, and 14 cycles.
- Code at aesencryption.net (asym, PHP, Java)
- As of 2014, there are some attacks that take less than key-size time, but no practical ones.

AES-128 schematic

10 rounds

Sharing Keys

- Usually, cryptography just assumes the encryption E and decryption D functions are known. The problem is how to share keys...
- No sharing is necessary with Public Key Encryption (PKE). Every individual has two keys. One private, secret key $\mathrm{k}_{\text {Asec }}$ that only the individual Alice knows, the other is public $\mathrm{k}_{\text {Apub }}$, that Alice publishes on a public web site for all to see.

Asymmetric Public Key Encryption - PKE

- (G,E,D,K,K',M,C) is a PKE iff
- Key Generator $\mathrm{G}:\{ \} \rightarrow \mathrm{K} \times \mathrm{K}^{\prime}$ where G()$=\left(\mathrm{k}_{\text {pub }}, \mathrm{k}_{\text {piv }}\right)$
- Encryption E: KxM $\rightarrow \mathrm{C}$
- Decryption D: K' x C \rightarrow M
- $D\left(k_{\text {priv }} E\left(k_{\text {pub }}, m\right)\right)=m$
- Each user of the (G,E,D) PKE gets a pair of keys from G. The keys $\mathrm{k}_{\text {pub }}$ and the functions E and D are made public.
- Philosophy: to find $\mathrm{k}_{\text {priv }}$ from $\mathrm{k}_{\text {pub }}$, must solve a hard problem taking unfeasible compute power.

(Textbook) RSA

(Rivest, Shamir, Adleman, 1978)

- Hard problem: factor large n into primes.
- Choose large primes p and q of similar size, and set $n=p q($ keep $\phi(n), p$ and q secret) where $\phi(n)=(p-1)(q-1)=\left|Z / n^{*}\right|$. For G: pick e in $Z / \phi(n)^{*}$ and compute $d=e^{-1}$. Then $\mathrm{k}_{\text {pub }}=(\mathrm{n}, \mathrm{e})$ and $\mathrm{k}_{\text {priv }}=(\mathrm{n}, \mathrm{d})$.
- For message m in Z / n, define $E(k, m)=m^{e}$ and $D(k, m)=m^{d} \bmod n$.
- Theorem. $\mathrm{m}^{\text {ed }}=\mathrm{m} \bmod \mathrm{n}$

Homework: Why RSA works

- Since ed $=1 \bmod \phi(n)$, ed $=1+k(p-1)(q-1)$
- In $Z / n, D(d, c)=c^{d}=m^{e d}=m^{1+k(p-1)(q-1)}=$ $m\left(m^{\phi(n)}\right)^{\mathrm{k}}=\mathrm{m}$ if m is invertible in Z / n; if not, then $\operatorname{gcd}(m, n)>1$ is a factor of n, say $m=r p$. Then $m^{1+k(p-1)(a-1)}=r p\left((r p)^{p-1}\right)^{(6 a-1)}=$ rp_{p} mod q . Hence both m and $\mathrm{m}^{1+(\mathrm{k}(\mathrm{p}-1)(\mathrm{q}-1)}=0 \bmod \mathrm{p}$ and $=\mathrm{rp}$ mod q . By CRT they are equal $\bmod \mathrm{pq}=\mathrm{n}$.
- Hard to compute d from e: one must know $\phi(n)$ $=(p-1)(q-1)$. In which case, $p+q=n-\phi(n)+1$ and $p-q=\operatorname{sqrt}\left((p+q)^{2}-\right.$ 4n) and $p=(p+q) / 2+(p-q) / 2$ and $q=(p+q) / 2-(p-q) / 2$. Thus knowing n and $\phi(n)$ yields the factors p and q.

Beware for RSA

- Primes p, q are "safe" iff p-1 and q-1 have large prime factors (Z / n will have large cyclic subgroups.)
- Primes p and q cannot have same number of digits; else, search for p, q starting at $\operatorname{sqrt(n)}$
- Public key e cannot be too small
- Stop using 1024 bit RSA, quadratic and number-field sieves are effective. 2048 is slow. ECC better.
- Always pad message m to get m' (more on this later)
- Use well-tested, well-analyzed implementation

Padding RSA

- Problems with textbook RSA
- (Malleable) if $c=m^{e}$ and $c^{\prime}=c^{*} 2^{e}$, decrsypting c^{\prime} gives $2 m$. i.e. can make predictable changes to ciphertexts.
- (Deterministic = not semantically secure) can distinguish between plain text m and m by encrypting both with public key.
- Basic idea is to pad m with random bits r and encrypt $m \| r$ to get c. Decrypt c to get $m \| r$ and hence m . Neither Malleable nor Deterministic.

Optimal Asymmetric Encryption Padding (Wikipedia: OAEP)

Given, $\mathrm{n}=$ modulus of RSA, k0 fixed integer, G expands k0 bits to $\mathrm{n}-\mathrm{kO}$ bits, H reduces n -k0 bits to k0 bits.

- pad m with k 1 zeroes to be m' of n -k0 bits
- Pick random k0 bit string r
- $X=m^{\prime} \underline{X O R} G(r), Y=r \underline{X O R} H(X)$
- Encrypt $X|\mid Y$ to get c; decrypt c to get $X| \mid Y$
- Recover $r=Y$ XOR $H(X), m^{\prime}=X \underline{X O R} G(r)$
- Strip k1 zeroes off m ' to get m

El Gamal (Avoided RSA Patent)

- Hard problem: compute discrete logs mod p for large prime p, i.e. solve $y=g^{\times}$for $x \bmod p$
- Choose large p and generator g of Z / p^{*}
- G: pick random d in Z / p^{*}, compute $e=g^{d}$. Then $k_{\text {pub }}=e$ and $k_{\text {priv }}=d$.
- To encrypt min Z/p, choose random (secret) integer k and compute $r=g^{k}$ and $t=e^{k} m$; discard $k . E(e, m)=$ (r, t) and $D(d, c=(r, t))=t^{*} r^{-d}$. Exercise: $D(d, E(e, m))=m$.
- Choose a different k for every (block) m .

Homework: Why El Gamal works

- $D(d, E(e, m))=D\left(d,\left(g^{k}, e^{k} m\right)\right)=e^{k} m\left(g^{k}\right)^{-d}=$ $g^{\mathrm{ak}} m\left(\mathrm{~g}^{\mathrm{k}}\right)^{-\mathrm{d}}=\mathrm{m}$
- Exercise: D(e,E(d,m)) = m
- Hard: to discover d from e, one must solve e $=g^{d}$ for $d=\log _{g}(e)$. This is the discrete log problem.
- BEWARE: if same k is used for two blocks m and m^{\prime}, then m ' can be recovered from m .

Diffie-Hellman

- Pick a large prime p of 600 digits ~ 2000 bits
- Pick a finite cyclic group $G=(\mathrm{g})$ of order n
- G could be Z / p^{*} or an elliptic curve of char p
- Alice chooses random secret a in Z / n and sends $A=g^{a}$ to Bob
- Bob chooses random secret bin Z / n and sends $B=g^{b}$ to Alice
- $A^{b}=B^{a}=g^{\text {ab }}$ is a shared secret key in G.

Session Keys

- Suppose $G()=(k p u b, k p r i v)$ for E, D. Let $k_{\text {Apub }}$ and $\mathrm{k}_{\text {Apriv }}$ be public and private keys for Alice.
- For Bob to share a secret key k with Alice, he just encrypts k with $\mathrm{k}_{\text {Apub }}$ and sends the result c $=E\left(\mathrm{k}_{\text {Apub }}, \mathrm{k}\right)$ to Alice who can retrieve $\mathrm{k}=$ $D\left(k_{\text {Apriv }}, c\right)$ using her private key.
- Session keys used by many network protocols

Elliptic Curves

- Weirstrauss eqn $y^{2}=x^{3}+a x+b$ where the discriminant $4 a^{3}+27 b^{2} \neq 0$

$$
y^{2}=x^{3}-4 x+0.67
$$

Points on an Elliptic Curve

- Write down equations for $\mathrm{A}+\mathrm{B}$, and get a finite abelian group $E(F)$ (assoc law tedious) over finite field F.
- Elliptic Discrete Logs: given $Y=r X$ find r.
- Choices are made to improve performance and difficulty of EDL problem. Also need a (public) message embedding i: $\{\mathrm{m}\} \rightarrow \mathbf{E}(\mathrm{F})$ or a way to use only the x-coordinates.

Elliptic El Gamal

- For elliptic curve E over F, pick a "base point" G with $(G)=E(F)$ with $i:\{m\} \rightarrow E(F)$
- A private key is a random integer a; compute public $A=a G$. For a message m, pick random integer k and
- Encrypt $E(A, m)=(k G, k A+i(m))$.
- Decrypt by $D(a,(R, T))=-a R+T$
- $\mathrm{D}(\mathrm{a}, \mathrm{E}(\mathrm{A}, \mathrm{m}))=\mathrm{D}(\mathrm{a},(\mathrm{kG}, \mathrm{kA}+\mathrm{i}(\mathrm{m})))=-\mathrm{akG}+\mathrm{kA}+\mathrm{i}(\mathrm{m})=$ $-k A+k A+i(m)=i(m)$

Choosing Fields and Equations for Elliptic Encryption

- Focus on $\mathrm{F}=\mathrm{F}_{\mathrm{q}}$ where $\mathrm{q}=2^{\mathrm{m}}$ or $\mathrm{q}=$ large p ; there are q distinct elliptic curves over F_{q}.
- For $q=2^{m}, E: y^{2}+x y=x^{3}+a x+b, 4 a^{3}+27 b^{2} \neq 0$
- $|F|$ and |Curve| need to be large. Eqn needs to be simple for easy computation. The base point (generator) G is chosen so that its multiples rG are easy to compute.
- NIST has recommendations (FIPS 186), but there is a fog of suspicion (NY Times, 2013, and multiple other recent papers) due to NSA involvement. Non-NIST curves are gaining popularity Cf. Bernstein and Lange: http://safecurves.cr.yp.to

Bernstein's Curve25519

- Dan Bernstein: lucid paper on encryption performance and security with Curve25519
- $\mathrm{p}=2^{255}-19, F=F_{p}=Z / p, g=9$
- $y^{2}=x^{3}+486662 x^{2}+x \quad$ (Montgomery form)
- Keys are 32 byte x -coordinates via map $\mathrm{E} \rightarrow \mathrm{F}$
- Generates 32 byte shared secret key
- Uses floating point registers for fast arithmetic
- Many applications today use Curve25519

Cryptographic Hash Functions

- H:Data \rightarrow Values where |Values| << |Data|
(a)Easy to compute; use entire data/message
(b)Infeasible to invert (to find preimage)
(c)Infeasible to modify w/o (large) value change (to find $2^{\text {nd }}$ preimage)
(d)Infeasible to find collisions
(e)Given $\mathrm{H}(\mathrm{m}), \mathrm{H}\left(\mathrm{m}^{\prime}\right)$, cannot compute $\mathrm{H}\left(\mathrm{m} \| \mathrm{m}^{\prime}\right)$
- If \mid Values $\mid=2^{n}$ then want $\operatorname{Prob}(b)=\operatorname{Prob}(c)=1 / 2^{n}$ and $\operatorname{Prob}(d)=1 / 2^{n / 2}$. "Security" $=n / 2$.
- Data \rightarrow Blocks \rightarrow State $\xrightarrow{\lrcorner} \ldots \xrightarrow{\lrcorner}$ State \rightarrow Output

Algorithm and variant		Output size (bits)	Internal state size (bits)	Block size (bits)	Max message size (bits)	Rounds	Operations	Security (bits)	Example Performance (MiB/S) ${ }^{[28]}$
MD5 (as reference)		128	$\begin{gathered} 128 \\ (4 \times 32) \end{gathered}$	512	$2^{64}-1$	64		<64 (collisions found)	335
SHA-O		160	$\begin{gathered} 160 \\ (5 \times 32) \end{gathered}$	512	$2^{64}-1$	80	And, Xor, Rot, Add $\left(\bmod 2^{32}\right)$,	<80 (collisions found)	-
SHA-1		160	$\begin{gathered} 160 \\ (5 \times 32) \end{gathered}$	512	$2^{64}-1$	80	Or	<80 (theoretical attack ${ }^{[29]}$ $\text { in } 2^{61} \text {) }$	192
$\begin{gathered} \text { SHA } \\ 2 \end{gathered}$	$\begin{aligned} & \text { SHA-224 } \\ & \text { SHA-256 } \end{aligned}$	$\begin{aligned} & 224 \\ & 256 \end{aligned}$	$\begin{gathered} 256 \\ (8 \times 32) \end{gathered}$	512	$2^{64}-1$	64	And, Xor, Rot, Add $\left(\bmod 2^{32}\right)$, Or, Shr	$\begin{aligned} & 112 \\ & 128 \end{aligned}$	139
	SHA-384 SHA-512 SHA. 512/224 SHA- 512/256	$\begin{aligned} & 384 \\ & 512 \\ & 224 \\ & 256 \end{aligned}$	$\begin{gathered} 512 \\ (8 \times 64) \end{gathered}$	1024	$2^{128}-1$	80		$\begin{aligned} & 192 \\ & 256 \\ & 112 \\ & 128 \end{aligned}$	154
	SHA3-224 SHA3-256	$\begin{aligned} & 224 \\ & 256 \end{aligned}$		$\begin{aligned} & 1152 \\ & 1088 \end{aligned}$				$\begin{aligned} & 112 \\ & 128 \end{aligned}$	

Avalanche Effect

Using RHash implementation (not official)
SHA3-256("The quick brown fox jumps over the lazy dog")= $0 x$ 69070dda01975c8c120c3aada1b282394e7f032fa9cf32f4cb 2259a0897dfc04
SHA3-256("The quick brown fox jumps over the lazy dog.")= $0 x$ a80f839cd4f83f6c3dafc87feae470045e4eb0d366397d5c6ce 34ba1739f734d

Hash Applications

- File/message integrity: publish hash value, recompute it after file/message transfer. "Message Authentication Code" = MAC = hash value
- Password storage: only store the hash value (usually store (salt, H (salt||password)) to avoid knowing Alice and Bob have the same pswd or precomputing H (common words).)
- Digital signatures (analog of ink): if k is a shared secret key for (E, D) then $S(k, m)=E(k, H(m))$ is a signature, and can send ($m, S(k, m)$) in the clear.
- Has the usual key sharing problem
- How about using public key encryption?

Digital (Public Key) Signatures

- Want authentication and non-repudiation: If Alice provides a signature, verify authentic, and prove she cannot later deny that it is hers.
- Scheme-type hard problems
- Integer factorizations (RSA, Rabin)
- Discrete Logarithms (El Gamal, Schnorr, DSA, Nyberg-Rueppel)
- Elliptic Curves (ECDSA)

RSA Signatures

- Pick large primes p and q with $\mathrm{n}=\mathrm{pq}$. Pick $\mathrm{ed}=1$ in $\mathrm{Z} / \phi(\mathrm{n})^{*}$ where $\phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)=\left|\mathrm{Z} / \mathrm{n}^{*}\right|$
- d is private key, e is public key.
- To sign m in Z / n, compute $h=H(m)$, then $s=h^{d}$ $\bmod \mathrm{n}$ is the signature. Verify $\mathrm{s}^{\mathrm{e}}=\mathrm{h}$ in Z / n.
- Authentication: $s^{e}=h^{\text {ed }}=h^{1+k \phi(n)}=h$ (exercise)
- Non-repudiation: only holder of d could have created s

El Gamal Signatures

- Let p be a large prime, g a generator of Z / p^{*}
- Alice's private key d with $1<d<p-1$. $e=g^{d}$ is the public key. Note $\mathrm{p}, \mathrm{g}, \mathrm{e}$, and hash fcn H are public.
- To sign m in Z / p, pick random $k, 1<k<p-1$, gcd(k,p1) $=1$. Compute $h=H(m), r=g^{k}$, and $s=(h-d r) k^{-1} \bmod p-1$. If $s=0$, pick a new $k .(r, s)$ is the signature.
- Accept (r, s) if $0<r<p \& 0<s<p-1 \& g^{h}=e^{r} r^{s} \bmod p$
- If e, d are Alice's keys, then $e=g^{d}$ and $r=g^{k}$, hence $g^{h}=$ $g^{k s} g^{d r} g^{(t p-1)}=e^{\prime} r^{s}$ since $g^{p-1}=1 \bmod p$
- Given $g^{h}=e^{r} r^{s} \bmod p$, is s Alice's signature?

Schnorr Signatures

(Patent expired in 2008)

- Let $\mathrm{G}=(\mathrm{g})$ have prime order q, e.g. G a subgroup of Z / p^{*}, let H be a crypto hash fcn. Let $1<d<p-1$ be the private key, $\mathrm{e}=\mathrm{g}^{\mathrm{d}}$ the public key. To sign a finite bit string message m, choose a random $k, 1<k<p-1$ and let $r=g^{k}$ be represented as a bit string. Let $h=H(m \|$ $r)$. Let $s=k$-hd mod $p-1$. The signature is (s, h). Since $r=g^{s+h d+(t p-1)}=g^{s} e^{h}$ in $Z / p, h=H\left(m \| g^{s} e^{h}\right)$
- Accept (s, h) if $h=H\left(m \| g^{s} e^{h}\right)$
- Nice: with Schnorr, no inversions are necessary to compute or verify the signature (s, h)
"The" Digital Signature Algorithm DSA (Your tax dollars at work)
- Now FIPS 186-4, with H = SHA 1 or 2.
- Choose an N bit prime q. $\mathrm{N}<0$ outputsize(H)
- Choose an L bit prime p: p-1=mq.
- Choose g in Z/p of order q, e.g. $g=h^{(p-1) / q}$
- Now apply El Gamal with (p,q,g)

ECDSA - sign

(Additive El Gamal)

- Elliptic E, G base point of prime order n, d_{A} in Z / n is Alice's private key, $Q_{A}=d_{A} G$ her public key, cryptographic hash H . To sign message m in Z / n :

1. Select random k in Z / n^{*}, different for all signatures
2. Calculate $\left(x_{1}, y_{1}\right)=k G$; convert x_{1} to an integer \bar{x}_{1}
3. Calculate $r=\bar{x}_{1} \bmod n$. If $r=0 \bmod n$, goto 1
4. Calculate $e=H(m)$. If $e+r d_{A}=0 \bmod n$, goto 1
5. Calculate $s=k^{-1}\left(e+r d_{A}\right)$ in Z / n^{*}
6. Output (r, s) as the signature

ECDSA - verify

- Assume Bob has certified copy of Alice's credentials, e and m.
- Verify signature (r, s)
- Validate r and s are in Z / n^{*}
- Calculate $w=s^{-1}, u_{1}=e w, u_{2}=r w \bmod n$
- Calculate $\mathrm{C}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\mathrm{u}_{1} \mathrm{G}+\mathrm{u}_{2} \mathrm{Q}_{\mathrm{A}}$
- If $C=O$, reject signature
- Convert x_{2} to an integer $\bar{x}_{2} \bmod n$
- Signature valid iff $r=\bar{x}_{2} \bmod n$

ECDSA - proof

- Why does verification work?
- If signature (r, s) was computed by Alice, then $Q_{A}=d_{A} G, r=\bar{x}_{1} \bmod n$ where $\left(x_{1}, y_{1}\right)=k G$ for k in Z / n^{*}, and $s=k^{-1}\left(e+r d_{A}\right)$ in Z / n^{*} where $e=H(m)$. Write $C=\left(x_{2}, y_{2}\right)=u_{1} G+u_{2} Q_{A}$ where $u_{1}=e s^{-1}$ and $u_{2}=r s^{-1} \bmod n$. Thus $C=\left(e s^{-1}\right) G+\left(r s^{-1} d_{A}\right) G=\left(e+r d_{A}\right) s^{-1} G=\left(e+r d_{A}\right) k\left(e+r d_{A}\right)^{-1} G=k G=\left(x_{1}, y_{1}\right)$, and hence $r=\bar{x}_{1}=\bar{x}_{2} \bmod n$
- Conversely, suppose Bob receives (r, s) as a signature. He computes $C=$ $\left(x_{2}, y_{2}\right)=u_{1} G+u_{2} Q_{A}$ where $u_{1}=e s^{-1}, u_{2}=r s^{-1} \bmod n$, and $e=H(m)$. Bob verifies that $r=\bar{x}_{2} \bmod n$. Write $C=k G$. We know $Q_{A}=d_{A} G$. Thus $k G=$ $C=\left(e s^{-1}\right) G+r d_{A} s^{-1} G=\left(e+r d_{A}\right) s^{-1} G$. Thus $k=\left(e+r d_{A}\right) s^{-1}$ in Z / n, and $s=$ $\left(e+r d_{A}\right) / k$. In other words, r and s are determined, and the signature (r, s) must have been created using Alice's private key d_{A}.

Sony Playstation3 ECDSA Hack Repeating use of k

- Given (r, s) and ($\mathrm{r}, \mathrm{s}^{\prime}$) for messages m and m^{\prime}, with hashs e and e'; if same k, note that
- $\mathrm{s}-\mathrm{s}^{\prime}=\mathrm{k}^{-1}\left(\mathrm{e}-\mathrm{e}^{\prime}\right) \bmod \mathrm{n}$, so $\mathrm{k}=\left(\mathrm{e}-\mathrm{e}^{\prime}\right) /\left(\mathrm{s}-\mathrm{s}^{\prime}\right)$ and one can solve $s=k^{-1}\left(e+r d_{A}\right)$ for Alice's private key d_{A}.

Ref: Console Hacking 2010

Certificates
 Authentication, Public Keys, etc

- Certificate Contents
- Certification Authority - CA
- Root CA - certifies its own keys!
- Certificate Owner
- Expiration Date
- Owner's Public Key
- Certificate serial number
- Other identifying info
- Digital Signature(s).

Secure Socket Layer, SSL 2,3 \rightarrow Transport Security Layer, TSL 3.1,...

- Secure TCP connection = Key exchange method, encryption algorithm, and content authentication hash algo
- Handshake:
- client hello: cipher proposal, 32 random bytes
- server hello: select cipher, 32 random bytes, certificate, hello done
- client key exchange: 48 byte secret encrypted with server public key, change to cipher msg
- Server change to cipher msg, finished record encrypted and MAC'd
- For some applications, server may request client certificate
- Record Processing: cuts msg into blocks, opt. compresses, hashes, encrypts block, sends to Transport Layer

HTTPS

- HTTPS requires SSL/TLS to be used
- Some overhead, often accelerated with hw
- No client certificates.
- Marking cookies "secure" tells browser to only send cookie data, e.g. session Ids, via SSL/TLS. (Cookies should also be marked "HTTPonly" to inhibit javascript client-side attacks.)

Recommended Key Lengths

- Need longer and longer keys over time
- Hardware improvements
- Algorithm improvements
- Ask how long your encryption should last! 50 years is reasonable....
- There are legal issues around both time and key storage. Don't lose your keys!!!
- NIST, ANSSI, BSI, NSA publish recommendations; also check www.keylength.com

What to use and trust?

- OTR: Off the Record messaging
- Tor
- StartPage - privacy browser
- Tails - a live OS that can boot from an external drive. Used to preserve privacy.
- GPG, GPG4Win (Gnu freeware impl of OpenPGP)
- TrueCrypt - might be back online; does disk encryption
- MiniLock email uses Curve25519
- File Erasure - PGP does only one overwrite
- Air Gapped Computers - transfer via USB still tricky
- SSL/TLS??? OpenSSL? Not BGP due to router infections.
- Sage - open source math tool

Final Thoughts

- Cryptography is only the non-people part of security.
- Known attacks prove future attacks will become more sophisticated and widespread with many actors.
- While credit card and IP theft is on the rise, a wave of ICS cyber-terrorism (stuxnet-style) has yet to hit big. We are not prepared for either.
- The economics of security will soon change as the cost of cyber-crime is fairly allocated.
- Encryption is hard to implement correctly, and Cryptanalysis is only in its infancy. Cryptography should be taught to undergraduate engineers. It is basic math and basic engineering.
- Backup your systems offline to protect from ransomware

